Download Free PDF View PDF
Download Free PDF View PDF
Understanding human behaviour is key to understanding the spread of epidemics, habit dispersion, and the efficacy of health interventions. Investigation into the patterns of and drivers for human behaviour has often been facilitated by paper tools such as surveys, journals, and diaries. These tools have drawbacks in that they can be forgotten, go unfilled, and depend on often unreliable human memories. Researcher-driven data collection mechanisms, such as interviews and direct observation, alleviate some of these problems while introducing others, such as bias and observer effects. In response to this, technological means such as specialpurpose data collection hardware, wireless sensor networks, and apps for smart devices have been built to collect behavioural data. These technologies further reduce the problems experienced by more traditional behavioural research tools, but often experience problems of reliability, generality, extensibility, and ease of configuration. This document.
Download Free PDF View PDF
Download Free PDF View PDF
Download Free PDF View PDF
Mobile devices are rapidly becoming the primary computing device in people's lives. Application delivery platforms like Google Play, Apple App Store have transformed mobile phones into intelligent computing devices by the means of applications that can be downloaded and installed instantly. Many of these applications take advantage of the plethora of sensors installed on the mobile device to deliver enhanced user experience. The sensors on the smartphone provide the opportunity to develop innovative mobile opportunistic sensing applications in many sectors including healthcare, environmental monitoring and transportation. In this paper, we present a collaborative mobile sensing framework namely Mobile Sensor Data EngiNe (MOSDEN) that can operate on smartphones capturing and sharing sensed data between multiple distributed applications and users. MOSDEN follows a component-based design philosophy promoting reuse for easy and quick opportunistic sensing application deployments. MOSDEN separates the application-specific processing from the sensing, storing and sharing. MOSDEN is scalable and requires minimal development effort from the application developer. We have implemented our framework on Android-based mobile platforms and evaluate its performance to validate the feasibility and efficiency of MOSDEN to operate collaboratively in mobile opportunistic sensing applications. Experimental outcomes and lessons learnt conclude the paper.
Download Free PDF View PDF
Mobile smartphones along with embedded sensors have become an efficient enabler for various mobile applications including opportunistic sensing. The hi-tech advances in smartphones are opening up a world of possibilities. This paper proposes a mobile collaborative platform called MOSDEN that enables and supports opportunistic sensing at run time. MOSDEN captures and shares sensor data acrossmultiple apps, smartphones and users. MOSDEN supports the emerging trend of separating sensors from application-specific processing, storing and sharing. MOSDEN promotes reuse and re-purposing of sensor data hence reducing the efforts in developing novel opportunistic sensing applications. MOSDEN has been implemented on Android-based smartphones and tablets. Experimental evaluations validate the scalability and energy efficiency of MOSDEN and its suitability towards real world applications. The results of evaluation and lessons learned are presented and discussed in this paper.
Download Free PDF View PDF
The rapid emergence of new technologies in recent decades has opened up a world of opportunities for a better understanding of human mobility and behavior. It is now possible to recognize human movements, physical activity and the environments in which they take place. And this can be done with high precision, thanks to miniature sensors integrated into our everyday devices. In this paper, we explore different methodologies for recognizing and characterizing physical activities performed by people wearing new smart devices. Whether it's smartglasses, smartwatches or smartphones, we show that each of these specialized wearables has a role to play in interpreting and monitoring moments in a user's life. In particular, we propose an approach that splits the concept of physical activity into two sub-categories that we call micro-and macro-activities. Micro-and macro-activities are supposed to have functional relationship with each other and should therefore help to better unders.
Download Free PDF View PDF
The Internet of Things (IoT) envisions billions of sensors deployed around us and connected to the Internet, where the mobile crowd sensing technologies are widely used to collect data in different contexts of the IoT paradigm. Due to the popularity of Big Data technologies, processing and storing large volumes of data have become easier than ever. However, large-scale data management tasks still require significant amounts of resources that can be expensive regardless of whether they are purchased or rented (e.g., pay-as-you-go infrastructure). Further, not everyone is interested in such large-scale data collection and analysis. More importantly, not everyone has the financial and computational resources to deal with such large volumes of data. Therefore, a timely need exists for a cloud-integrated mobile crowd sensing platform that is capable of capturing sensors data, on-demand, based on conditions enforced by the data consumers. In this paper, we propose a context-aware, specifically, location and activity-aware mobile sensing platform called context-aware mobile sensor data engine (C-MOSDEN) for the IoT domain. We evaluated the proposed platform using three real-world scenarios that highlight the importance of selective sensing. The computational effectiveness and efficiency of the proposed platform are investigated and are used to highlight the advantages of context-aware selective sensing.
Download Free PDF View PDF
Modeling and Using Context